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1. Background

Manipulator dynamics concerns the relationship between the motion of a mechanical kinematic chain of

linkages anid the forces applied by its actuators. For sonic prollenis, such its simulation, the forces arc

known and it is desired to comptlte the resultinig imotion. li other cases, such as tile illlortant area of

real-time control, the dcsircd motion is known and the Ilrces necessary to achie~e thai motion inust Ie

ci'niptted. In either case, Iir a gicn model of a kilnelnatic chain :in exact soilution cal he iund, " ithii

it" Iltvjme%%ork of Ne~tonianll mehanics. The Ifrmcr ctse Ic(llC''s to a syste.n of noil-linciar sc.ond order

diffelltlial equatioln, hich c.nI he ok ed 1 mmlc, ically. The latcr case is casicr-- the rcqiied hrees can

he expressed directly in tein1s ol'the known iposition., elocity and acceleration of the chain.

In this paper we restrict tile discussion to open-loop kinematic chains, comnposed of rigid links con-

nected b) joints that allow relati% e motion of the links. We assume that each joint has only one degree

of Freedom, either rotational or translational. Mtltiple rotational degrees of freedomt can be modelled by

links of ieo mass and length.

1.1 Lagrangian Generalized Coordinates

Ii Ne to's origina i'rnmmlation o1 mcChaliCs, the rclatiOnship between IbrCl.s aCtil ng oibdies and

the resullingt accelerations is describcd using cartesian coordinate systems. There arc other, equivalent

ways to describe the dy.namics of a system of bodic .. One such mcthod was invented by Iagranlge. using

what are known ,is generalited coordinates. Generalized coordinates are any convenient set of variables

Ihat complelely deline the position orfa system o bojies. The I arange equation

Out t
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d (at, (,.

describes the relationship between te corresponding generalized forces acting on the bodies and the

kinetic and potential energy of the system. I lere q, is a generali/ed coordinate, -r, is (ie corresponding

generaized fbrce, aiid the dol indicates dill'erentiation with respect to 1(ime. L is he I agrangian- -te

dif 'rence between tile total kinetic energy and the tolal potlential energy of ihe systemn: £ -= K - P.

While the I agrange Cqiiai0in nmust yield the same numerical results is direct application of Newtt)n's

laws, either approach may be more convenielt than the other in i given situtation, or may provide greater

insight into the physics of the problem.

1.2 The Uicker/Kahn Formulation

A kni7ail ic chain his a natural set of coordinates that comlnpletely specify its positionl--ilie joint

%;iriahles q1, (ant"ics t o rotationial joints and distalinces lIo1 slidiig oilis). The q, salisly ile ,,titiiielliiils

Ifr w g.'er.lii/Cd cLiildilid its. I.mllirerill()re, thy cali he fli.1sored dir cc'l. by the illmlipol.tor and the

L, ar i.", .idll(g g:nc iali,ed finrccs (t(oirques Ioir iotatinial jo ints amd i u.i. I' 16.c" r slidii ig jolls) are

J,;it ,Ih, it i l he Ctot r 11led. It is not surprising, then, that the pioneering %% ork of I icker III and Kahn (-I

ol the d nainics ofr mechanical linkages made use Of te I agriangian iethod.

From the standpoint of the present dikcussion, the importalit feature of the work of Uicker and

Kahn is tlheir use of 4 X 4 riitaion/transla ion inatricies W, to represent tie position and mlotion of the

kinematic chain. A coordinate system is attached to and moves with each link. The matrix , transforms

the components of a %ector with respect to link i coordinates to its components with respect to a fixed

(inerli,) Coordinate Sstlem. The position and motion of the chain is described by the W,'s and their liiile

dc! ikakIi cs, . hich are in turn Functions of the q,'s and their time derivatives.

(!-c the kinctic and potential energ) f the chain is expressed iu terms ir the IV,'s aid Iheir deriva-

ti es. it is a straightfiu'rard matter toI apply the I.agrange equiation and finil the geemirali/ed foft'es. 111e

7 , "1*



W~siliam \.1 Sthcr 5

icstult looks like

1tI JWj J (1.2)

%% here r, is the generali/ed for-cc applied to the ith joint, Jj is the 4 x 4 inertia matrix of the jib link in

that link's coordinates, and Ir is the trace operation. T he gra~ ity term is omnitted here because it is not

important for this paprer, although in geiieral it must of course be included.

It has been obscr~ ed b mns authors that evaluating (0.2) directly ats Nkritten requires timce propor-

it the 1Iour1th p~o\er of the nuniher ollinks. I lollerhach 1.11 has dletermiined that for 6 links vell ,-.cr

I 00(0 ,ithk, 'i1d nuilthiplies w otild be needed to comiptte all ol the re's, and I .ih el al. 141 report that

at ltiai provgram1 running on at P1 )lI- 1/45 took i1CArly 8 scLonds to compute theiti. Since at real-time

Control SyStemf would have to repeat this calculation at at rate ont tie order of 60 1IP., until recently it had

been believed that at manipulator could not he controlled by direct real-time calculation of the actuator

forces, without introducing ilpprox iifat ions or Lising lookup tables.

The inetliciency of the original Uickcr/Kahn Formulation, its well ats other reasons%, have led research-

ers to look for alternati~ e formutlations Of mnanipulator dynamics. 111e Most successful of these has been

the New ton-Ftiler approach.

1.3 The Newton-fuler Approach

In order to apply, New ton's laiws to objects which are 1101 point nausscs, we consider suich objects to

be composed of a large ntumber of point masses bound together by effectively infinite internal liIrccs. Thbe

laws governing these so-called "rigid bodies" may be derived from Newtonian mechanics [5]. 'lie key

feaiture is that the description of motion is broken uip into two independent components-linear motion

(if the center of mass (or otlher suitable: point) and rotation of the body about that Point. llic total vector

force acting on the body is related to thc acceleration of tie center of miass by Newtoni's second law:

miu. '[ he total vector moment (torque) about the center of mass is related to the angular velocity and
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angular acceleration oF the boaly by I tiler's equation

N= f. +w X (. w). (1.3)

TIheI Ilcr Ceqlafit ill l lhs directly froll ihe laws of Io talfng relericnc Craincs and (he Itlh lilig

delinitions: W alnglar velocity

I iin rtia tensor

L w angular ioneitiU

dL
N - d- lolmIet (torque).

These dcfinitions are analogous to those found in the case of linear motion, except that inertia is a second

rank tensor instead of a scalar. since angular inonentim is not in general parallel to angular velocity. If we

use d* /dt to indicate diffetentiatil with respect l thle rotatilg mci'et'ce ffame, we then have:

N d1 d * , -x C

-~d(1-w)4-wX(I -W)

*-*' -W Xl'w).

to apply the Newton-I .uler cqiations to a kinemnatic chain, the following procedure may be uscd.

1. The base of the chain is either fixed or its motion is known. Starting fromt the base and working

oultwards, and using the known geometry of the chain, bi, Wi. and i of link i may be found in

teriis ofthe qj, 4j, and 4j of the prcceeding joints.

2. The total vector force Pi and the total vector moment Nj acting on each link may now be

determined using the Newton/Fuler equations.

3. The tolal force computed in step 2 is the vector sum of the forces exerted on the link bly its

ieighbors at the joints, and the force of gravity. The total illt)llient is the 'ector slin tl the piurc

riornents exerted on the link by its neighbor%, and the nioiletns generatled by (he forces exerted

~i
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by its niihIbors. 1 fllns if (lhe force and uinunelit actig at (tile end Ora link are knov it, we can

Use thie totakS l'011 Mtep 2 anid the knm ii fbircc of gravity to sol\e foir the force and moment

acting atl thle other end. These are equal and Op)POSite to the force and mnoment exerted by thc

gi~ en link onl its neighbor, by Newton's third law. Thius, ifithc forcc and monient exerted by thie

environment onl tile terminal link (e.g. the hand) arc known, we can proceed dov% in the chain to

the base and determine die force and moment acting at each joint.

4. For rotational joints, the vector moment determined in step 3 is projected along the axis of

rotation to yield thle joint torqUc. For sliding joints, the vector force from scep 3 is projected

along thie sliding axis to yield thie joint force. T he other components oflih force and moment

alge Lnerated h thle str~lcutre anld hearings of thle device.

It is Clear that1 m11any dctaiks 11ost he filed inl leloie tlie ;,ho'e piocedine canl actually he applied to a

kineimtic chainl. We umu1st hai\e ccntioms Imr defining the gvonmetry of the chain anid specifyinlg how the

joint variables are to be measu red, and coordinate systems that allow the %ector and tenisor quantities to

be speccified. T[he transformation reqnired by step I llUist be worked out, and thie operations specified by

the other steps lnust be wkritten down) in detail. [he eff'licicy Of thle resultinig COMpuLtation will depend on

how these issues are resolved.

Recently a nu.11mer of author-s have been interested in the Ncwton-Fuler approach, partly due to

Perceived problems With [lhe I agrangian Ibruitlatiomi, as muentioned above. Swepanenko and Vukuobratovic

161I worked mm it 11lie del, s in Locciictic n with wc uk oc mu nderstanid ineg (l ie dynlaillics (if hcmna m limmbs. One

of' their0 mainm goals wats to de~cllp at c o Ip LIicer p roigrami that co ulId perbm thle te cius moat liemlatical

Manliipulations necessary to Set upl thle equkatiOns of' motion1 from a dc- cription of' (lhe kinematic chain.

lhey rejectedI the I -agrange equation becimse of the dilfirentiations it requires-there arc severe pr-oblems

associated with numerical dlifferentiation, ats they pointed out. 'I'lese problems can be avoided. however,

by deriving the diff'erential equation of motion for an arbitrary kinematic chain, as is done in sction 3

for the open-loop class. Numerical values for a specific device are then substituted, but at this point all or
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thle necCussary dilleCreidations have been done symbolically. The gc ncral solution can readily bc found by

hand, and only needs to be done once.

Stepanenko and \'ukobratovic were not concerned with thc efficiency of dhe computation. 'I'ieir

forimulation wats revised by Orin ct Ail (71 in connection with the control of robot legs. 'Iucy imnproved

upon the efficicncy of Stcpanenko and Vukobrato% ic by referring the forces and rnionifnts. to coordinate

systems attached to the links instead of fixed coordinates. '[hecy also noticed that the sequential nature

ii the c nlptittin ( itecrating from ni he base to the lip to determine thie miot ion of dhc chain, anid then

From tthe lip to thle hase to dhetern ~le thle finircs, ats descib led ahoye) seem ed Io redtIce the co mputation

litieand Storage reCq ui reii en ts. IThey specti ltcd [fhat Su ch it a ;cUr ii ye ) r( inctlcd Mi night I) he10morefflicient

ini gei c ral bh it( d id no t dIraw an) conI cluisio ns. A rmnst ronig 181 and L ull et al. 141 pa id close5t attenI (t in to corn -

ptitational elliciency and confirmed these suspicions. They pointed otit that thle Newton-I ouler Formulation

leads to an) algorithin where the computation timie grows linearly with the number of links, as opposed

to the quartic behaviour of the origin al 1 agrangian formulation. T[hey further improved thle efficiency by

referring the linear and angular velocities and accelerations, as well as the forces and mioments, to link

coo~rdinates. In addition, (lie need for efficiency produced at Formulation which is simpler in many ways.

Fotir example, (lie three coordinate systems attached to each link by Stepaneniko an~d Vukobratovic were

replaced by one.

1.4 Recursive Lagrangian Dynamics

I lollerhach [31 realized that the recursive naturc of tie Ncwton-Flclr formulation that mnade it so

efficient could be achieved with the I agrangian formiulation as well. Starting with the original results of

Uicker and Kahn, hie developed forward and backward recurrence relations for the termis in (1.2) that al-

low the generalized forces to be computed in linear timec. '[he result for a 6-link mianipulator still required

about 5 timecs the numnber of adds and mulltiplies as tie I uh formnulittion, but this is about 15 timecs better

thmin direct e' aluation of (1.2).
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I lollerbach also realized that the use oti 4X 4 rotation/translation inatricies to represent (lic poIsition

anld motion of the chain led to inellicicoicies in thle calculation, le rcibrmiulated tile I agrangian dynainics

ill termls of pilC rotation miatricies to specify the oriewiation oif dile links, and displacement vecto~rs to

sp)c~i ly their position. TIhis ref~ormnulation resulted in an additional factor of 2 sin~ ings in adds and imul-

tip lies. brin giniig thle [aigra ngia n Ii wnuilatnin to with in roughlIy a factor' or 2 1 of' I -uh s Ne ~t m -Iu icr

il niulitioii.

1.5 The Importance of the Representation of Angular Velocity

I lillerbacli used a rotation miatrix IV, to specify thc orientation or link i of the kinemratic chain. W1i

transformns the components of at vector with respect to a coordinate systemn fixed in link i to its components

with respect to a fixed (inertial) coordinate systerm.T'he angular mnotion of link i is represented by the time

deriv ati% es of Wj: W1 and Wi.

Although WL, WL, and W, each have niine components, orientaionii has onily) three degrees of

fm cdo n mnd Ill usnl y LhilCe of thle ci )mmi nis are inidepe ndeiit. Ai eqi~ale iit rep reseni(at Uin foir the

angula r mo tion of a linik is 1-11 an igu lar velocity vecto m v, an mile angular acceleration vector iij, .Which

have heemi used in all of the Newtonl- Iulc' formiulations reported here, and which contain nol redundant

inflormiation. Unfortutiatcly, there in no "orientation vector" corresponding to Wj, the Fuler anigles or

eqtuivalent may be used instead, although we will not need to do so here.

In the next section we exploie in detail the relationship between w and W, and tie resultiing descrip-

tions of rotational dynirnies. fIn the following section we show that a I agrangian formnulation based on

w instead of IV leads to exactly thle same comiputation as dhe Newton-Euler formnulation. '['his restult is

hardly surip risinmg, sinmce bh( etlinehods nitinst give thle samne nu mcm'ical stilt itit n, anmd we are now starting

will) exactly thle Sallie quantities. Th'le signiifikance ofl this result is not juist thatl it doesn't natter which

Foi rnulation one uses. Ratherf, it ',hows What thie reCal issues am'c ifomic is interested inl elliciency: structure of
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the Colput tion and choice olf representation.



2. Comparison of Rotational Dynamics with w and W

It iN shm illd t labow IaL the aglllar llotioll oa rigil hod'. cttild be descrie)Cd equally %%ell 1)by cither

the a I IF (IlaI \ eloit I Y \cc to r or Ihe dcii ti e ofi't raotation matrix, I V. Oh' itouisly .scalit qlti tics such ais

kinetic energy inust he independent of the representation chosen. but higher rank tensor qtantities Iced

not he, and expressioms ftor any quantity will be difl'erent in forit. Furthermorc, neither representation is

clearly better in all cases. L Ise of may yield at more ellicient computation, ut it has the disadvantage diat

there is lo "iloagullar position .ector" that it is tle derivative of. 'herelore, it is intcresting and tuseful to

c(l ipal C the d'scri ption of r)tational dii am ics that restilts rr nm difrerent chotices of replresentatitn, and

to Icc'. c It i inttIs thitat alItw one (to switch hemLw in i rese nllliat iHns. Tlhat is tile illill lptllll)1 i5C of this

wcclionl, tIthoi~ith ill lli;ikilm, this tLi nristlli we w ill Alsto ,et ei'les,siis iM n l lliic tia and kinetic

c lictgy \w h lil'tick t l t I Ol 'l "te .oc .' J l,

2.1 W

We start by defining I/ mote formally and introdttcIng so me conventions that are nccdcd below.

We assuime thati the reader is Familiar with the properties of the angular velocity vector W and rotating

reIrrnce Frames, which have been discussed in many texts (see. fllr example. 151).

let (At I, h.)Ie anI)YI fiXed (inlertial) ottl iormt Ibaisi, aInd C2.Clet ((Y , cf, b~ e anly orthlonoraital hatsis

atta ithted to a r tating rigid bldy. We will alwa ys ulse p riles to indicate rouital lg bais vecto (it- the

cottliponells oil vc'tor with respect to s ch a basis. Ihtus, ir f) is any vector we have:

II

V, ..
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Iromni nl oil we mill drop the summation sign and use the Iinstein summation convention, (hait is,

indices that ;ppeal twiC in nilly (lcI imiply a summation ml" (hat term omer all %a:h.es ofl he indices (i.e.

1,2, 2,}).

I 1',ilgi IthC ahOWCOM0m110n1i 'AC Cll 61Cte:

V ^ A A,

V, --S ,,, w e= (2t)

dw 1

Note also that since the in,.erse of is its tranIspose. we have:

,y' - . == . , (2.2)

,hteC h, If . te ,' (li, t \ <it lhe" i,,,il,, Ok tiy Itemiorb.

2.2 The Cross Product OperaLion

We must now hl'icfl discoss the cross-product operation, which is indispensible %lhen dealing with

rotation in three dimensions, and which must be tised unambiguously with second rank tensors as well as

%ectors. We assu11e that the standar-d geometric definition of the cross product of two vectors is known to

the reader.

I he cross pro(duct may he viewed as at function of two vectors that produces a third vector:

A b '(ab.

.i tt e %c, A C may \ ic'A the cross prontct as a runction or three vectnomrs that Ilroducs i scalar, tie so-

..I!cd s .d.ir triple product:

,a X b, c a P(ab, c).
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I lhC Ihinucli I' is:

* Linear in a, b, and c.

* Indeledent of the choice of basis vectors (since it is defined geometrically).

Therefore, P is a rank three tensor1 .

l'o find the compoents of P according to some right-handed basis {(e Ie, e 1. we simply apply the

Iunction to the basis vectors:

A A
S, X e- ek

I. ifijk is an even perinitatiol ol 123.

I, it ijk isan odd peIrilai in ol 123.

0. otherwise.

I'rom this it can be seen that P is totally anti-symmetric--swapping any two indices changes the sign (but

rotating the indices has no effect). To illustrate how P is used, here arc the formulas for the cross-product

of two vectors, and the scalar triple product, in coordinates:

[4. X ] PijkabL A bX Pijka~bjcLk.

There are two very useful idenlities issociated with the components of P:

PajkPi , =- 261L, (2.3)

and

1. ki..= bjg~kt - 6jm6 1J. (2.4)

I-cchnically, a pseudotensor, since it requires consistent use of right- or left-handcd coordinate systenm but not both.

* .; -

, S "
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2.3 The Relationship Between w and VV

We can no% find the explicit relationship between u and W. That relationship will be well to be

position (i.e. orientation) depcndet., and the position will alays be represented by (he rotation matrix

w.

ILet v be any vector 'otaling %kilii angular velocity w. We can derive the comnponents of 6 in die

fillowinig two ways:
1) b W X V, 2) v,-~ W,1v'

l,- I'), .t(4Vl b,= wiv i
IUquiilg the two gives:

W,jV' :7 -11A = PIAWlWjv'.

Since this must hold for any V. it is clear that

,j Pk1 WkWIj (2.5)

(or in %ector notation, W -- X IV). The inverse relation may be found from this and equations (2.2)

and (2.3) as follows:

1V12' I',kWk61i W2  PkmWw,,,21;v , A ;.,wk,.i ,,, =- ;,,w

..... ,WjjW lj I ,jP,,,,,t -- 26 ,,wk- 2w,.

M'ak ing aim aplriit'e pifc hange ordimtmmy indices, we get

, P1'j.W W ,, (2.6)

to which there is no corresponding vector notation known to the author.

2.4 RotaLional Inertia and Kinetic Energy

This section has three purposcs: it gi% es one example of how a d5 namic quantity (ro tional kinetic

energy) can he expressed in terms of either w or IV, it provides one way (if delinig the inertia ten.or (the
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d(kinition V ill dcpenid oi whethcr w oi - t/ is, used). and it pros ides the exprCsitmI hir r'ttiti l kinetic

energy ilht is needed tir the I agiangialn fi)ornulation o" he next seion.

I C1 r be it Cl'I Io (ll .I 'CCIter of'inass ita rigid h d a t4 i %lIlII i bl t 'll If Ill' m dmin. 11)c

%'hi% mid kinetic ener y ollhe oluime element (due to rotatlll of the I)ady ) .,In bIe ritlen as:

V 7

dK .v. vdm.

We will express dK ill terms of both IVn14 d w and ittcgrate ot ' the body to get tie total rotational

kinctic energy. The delinitions ol" hc inertia tensor will 1IIll out of the dcrivation. Ctmponeiis of vectors

are with respect to any right-handed orthonormalnl basis. primed for rotating and inprined for fixed, as

abo~ve. F.irst, rusing IV1:

dK .2 1(WJr')(,.kr'dm

K 1i~&r/ Adm
fV

let Jk frrpii dm (2.7)

K - ,J',+

jtr(l4'J'*T). (2.8)

The last expression is ii matrix form I r the beniI of readers who) are more Iamiliar wilh Ihl not4llkm.

Now we repcat the derivation, using q instcad:

6A!



William NI Silver 16 (Omolla-lo.o of Roalonal ID)naniar with w and W

1) =W X 7

,I( = .(w x r) . (w x r)dm

I I(w . w)(r r) -- (w - r)(w, r)]dm

-- [wwjr 2 -- wr,wrjldm

= *[wwAr - w,wjrrjjdm

= 3,,wj(r26,j - r,rj)dm

K = ,.,W, f (r26, - r,rj)dm

let I,j- f (r2  
-- r,rj)drn (2.9)

K lw,w,j ,,w I -w. (2 10)

I i .m 'tlolhlulls (2.7) .nd (0.')) l .l ICelu.1go1iSIh hetwecil he.1%o in ell.i uls .n,1 he seel:

I r(J)6- J, J . Lr((l)-. (2.11)

Note th.m smiue I mid .1 h.lu~ been delined .iaho e h their components, they hase not acthally been shown

to he lensors. I hi proof' rs ,itrple and can he supplied by die reader.

From equations (2.8) .nd (2. 10). and a definition of a generalized coordinate q, the rotational con-

trihtlioi to (lie coirlv oInding geierali/ed firce can e Fiund front die I agrange equation. 'l'his was

dMe h I hlleh0 i jI lIr W, and is done in the next section for w. We sutiminarize the resulls here for

f uI llparison:

.angular
%elocity

kinetic .w.! . r(WJ W')
energy

generalized p + w x (..-w)j • j WT.

While these expresions have been derived independently, hcir equality can be verified by direct substitu-

lion using equations (2.4). (2.5), (2.6). and (2.1 1).



3. Lagrangian Dynamics Using w Instead of IV

hi IlIj, ' LIi , I . gi e I Ile et. Iils A-1" the I ,agrl'lgialll or 'ilItulaioin ha ed on the angular kehK.ity %ector w.

Ilie geniali/td I1"rce are dergi ed fbr aly o e)el-l)l) kinemllatic chain, and the results are intcrpreted and

comi upared i the N l i(-I:tier lr inti l alian of .uh 141.

One feature that distinguishes tile preset formulation frorm previous ones is that expressions for the

generali/ed forces are deriscd without deining a single coordinate system. All quantities are expressed in

terms of geometric objects (tensors) and geometric operations (veL tor addition, dot and cross product). It

is only at the end, when a computation must he derived from these expressions, that coordinate systems

i1Ist he defined, so that the % ariotl, quantities can he Iueastred and rep esnted in a computer program.

At th is pi int. expl.',,si ,ils Ia y be eva li a .'d in ally c nenicnt righ -handed orthiln rn ial C cirdinaie sys-

il. Ilro,% ided h thIi 1s k, (h141C soeii .t t on4sieni um , mer. In practice. the imethod iLresentCd by I till 141 is
I1, ;= l, ost ellic:ient.

3.1 The Derivation of the Generalized Forces

In this section we write down the total kinetic energy of a kinematic chain and apply the L.agrange

equation to derive the generalized forces. 'he potential energy term due to gravity is omitted here as

mentioned in section 1.2, although this and other minor details are taken care of below.

The total ki.metic energy of a rigid boidy is the stim of the energy due to the motion of the center of

miass and the energy due it rotation about the center of nmss 151:

K + ~j~

17
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To get tile o0(al energy of.t cbdin, sum over all of ihe links:

K ' [IM,(VJ)2 4- 1w, i 0-] (31)

We may 110w compte tile deriawi~c% reqtired by the I *grange equaion (1.).

OK L.[rI, +wt. 11. (3.2)

Thle uN's terimi ol (3.?) 111illAN diwuLIy frI'Ii0 tile cliaitmI-tle. Fla tle %ewimld IcrImI. Imimle tl1,1i while file

inertia lenmor I, h"' a lcimiein or pasilion. it is ind~epeumdCcut oarly join v'elfwil i,,. I airtheumre. Sine I is

synmmectric,

*! 1,-W, = '10 -l

t Striiglitfoiur imrd aplicationI ofthc ruics for dilfrentiatimg products gives:

(OK)' . Ov, + dnv 1)

(Ii N dl I~ NJ

04 1  (it 616

Itis showni in Appendix A that:

d (Ov.' __ki2 (3.4)

wI,.wwt~ X 1w (3.5)

wi -, ri .weX a' 3.7
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Suhtiluting (3.4)-(3.7) into (3.3) gives:

d 6 i + , , , . + - , , .A ( 3 .8 )

Noa IIthe linal lM in ie I grnhngh equation:

Ydm~'W' p ~ , w(.9)
IAbJ Oq, O 'q.i.

I hls is %cry slail[Ir Ito (3.2). except liar the appcarencc of a lerm due to the position dependence of* the

611W.,,a, (Cll~a x is sho i iiiAppendix A that:

N,. 'k,=- , . (3.10)

Putting iL all together:

A , , I It;),., -14 , x (if, ' ,)l z , 11

3.2 Comparison with the Newton-Euler Formulation

We have derived the generalized forces in a very general way. without unnecessary details like

coordinate systems, link and joint numbering convcnions, and oilher conventions needed to specify the

gconctry of the manipulator. In order to interpret the result and compare it to the Newton- ulcr fornula-

tion, however, it is finally nesem-ary to make somi of these definitions. Such details arc not the point of

this paper, and will be kcpt to a minimum.

'llc links of the inaiiljiulator arc timicred comni.'tiwively Ciron fhe base fit 1K lip, is are the joints

that connect them. The base is considered to he link 0, while the tentinal link is numbered link ft. 1be

a '.]-
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A

,

,4.- I +l

Figure 3.1. Link and joint nunbering. and other conventions for op)en-lo-p kinem;tic chains.

joints are numbered I thin n, joint I connecting link I to the base. Thus joint i connects links i - I and

i: link i k ho ,ded hy joints i and i 1- I, as.hown ini figurc 3.1.

I1' jlilit i Is I(aldiiI)l. the joint ,ial ql, measuties (hi' ,mle of ro a ion froim somie (arbilrary lir tile

prewent €liscussiol) re erence point; if it is translational, qi measures tilc sliding disLin.e. 'The unit vector

z, is attached to joint i and points along the axis of rotation Ior rotary joints or along die sliding axis tor

sliding joints. Note that Ir rotary joints, qi must be measured in a right-hand sense about zi. Finally, let

pj, he a position vector thfat points fron anywhere along the axis ofjoint j to the centcr of mass of link

i. (Note: These definitions ofA and a,i are non-standard, and arc clcarly too ambiguous to be used in

practice. They are. however, all that is needed to understand equation (3.11)).

One of th, first things one notices when looking at equation (3.11) is that it contains the Newton-

4' ! "1 '': " " - " . . ... ,
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Fuler expressions for die total vector force and moment acting on a rigid body. In fact we caii rewrite

(3.11) as:

Thus wc arc vcry interested in the vectors ]v 1i//j and ailft that tie forcc Pi and nomCnt Ni arc

projccted onto. These vectoJrs spccify the dependencc of the lincar and angular velocity of link i on the

jolint velocity ofjoint j. For j > i there is no such dependence, and so these vectors are 0. Tlhis nmealls

hat the sIuniilation in equation (1.12) can he Iaken from i = j to i = n, instead of over all i.

For j < i, we note that Ihe linear and angilar motion of liink i may be written as the vector sum of

contributions due to the rclativc motion of the prcvious links at thc joints:

E (qjz) X p,. ifjoint j is rotational;

j_ I q4zj, if joint j is translational.

qZi, if joint j is rotational; 14)
j I j , il'joint j is translational.

I )illcrcntiating gives:
_._ J ^j X pj, ifjoint j is rotational;

J , ifjoint j is translational.

Owi fj if joint j is rotational;

Oq~, - 0_, if joint j is translational. (3.16)

If joint j is translational, the joint force can now bc written:

n
A

'jj-3
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I l'joint j is rotary, de torque is:

n

i= Z, x F,i +

Thiis, to cotmpute the generalized lortces we irst iterate f'ront the INIse to tile lip to COtInpLtC i',. wi, and cu,.

and tIII iterate I'roii the ip (14 the base using the above relations h) -'Cc u te the I' rtces. Rel 'Clriig to 141, it

C all Ic sent illat this is exactly Iie coll 1 tationl specilied hy L uh thilt was Ic, rived froi the Newn -Iuler

approach.

A few minor points still need to he cleared up, however. First, we arc still free to choose a coordinate

system or systems in which to evaluate these expressions. The method presented in 141 is probably best.

where quantities associated with a given link (such as the inertia tensor) are expressed in a coordinate

system attached to that link, and then arc transformed to the coordinates of the previous link as the

iteration proceeds.

Second. we tiust say soiiethiltg about the gravity termt which we have thus fiar ignored. We could

ilioludc it in the I agrango equation ilt the slandarid way, is at posilion depenidelt potential energy term.

I his is CquiVwl'nt to its illt hl ion in the Nwtt-[tii, r I nIi liltioll as described ill step . A1' section 1.3.

l'crlhap, a better way wis also dikctossCd by I.11h- instead ol'considering the base as lixed, give it a vector

acceleration equal to that due to gravity. lhoth methods will give the same numericil result, but I.ull's is

probably more efficient since fhe effect of gravity is computed only once.

Third is the sliding friction forces produced in the joints that [uh includes in his equations. Il'ese,

however, are simply computed based on the joint velocity and are added directly to the joint generalized

force. This clearly can be done no matter how the dynamics are formulated.

Finally, the Newton-Fuler dynamics includes the solution to the problem of the statics of te

manipulator, that is the effect of" the external force and moment acting on1 the terminal link. Ais call

he inchlidcd in the l agrangian formulation by sulpposing in additionaf link attached to the terminal link,

1 .. ...
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wh moioi is dclined so its to prdulce 1C reqIuired cxte rll Forces. "This is Wery 1nuch likc including

gravity )y ,pccifying lik acceleration ol thc base rather than the cqtuivalent forces.



A. Details for the Lagrangian Formulation

In Jlis Appendix vwe Supply Ihe delils that werc tomitted from the dcriu lion of the gencralized forces

presented in section 2.1.

lor equation (3.4). let r, lie a position \ector from any fixed origin Io the center of mass of link i, so

that vi -=,. Thcn we have:

() ov 3= ,,qj, E=(

(I. .9u, -d O(, al-I 0XE )•

lqial0ion (3.7):

W. -. , X (, ) " W ).

24
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i "r cqudlion (3.10): Following a procedure similar to that used in (A.I) above, it can be shown that:

cqj (3j

Thus we have:

iX li-bl X

"lerefore,

,. ,= t~i x ): -Iu', (l., x .)

1wi Wi wi X I Wi- 10i X , w,)

oqj '2- ( r o i

d (aw) _ adtkO~jJ d5q

1,,. X' V ~, .- . , ,', xt X W
Oq'wi XV- ....

.. .. 94 .2, - Xh "U, Ii i, x l i )

. .. oi X (I!i" ,l) O .

The final (and trickiest) prof is equation (3.6):

d ( )ti = Ii +Lai

We will need equations (3.14) and (3.16), and the conventions of section 3.2 (see figure 3.1), except that for

convenience we will take ,k to be 0 if joint k is translational.

First note that if joint j is translational, or ifj > i, wi is independent of both qj and 4., so that both

sides of the equation are identically zero. Now fbr j <! i, since Zi is attached to joint j and therefire link

j, we may write:

d (0~ 1 d 1, = JXA
oil (A.2)di \OiIJJ = iii=Wj xzj.(.

By considering the rotation of a vector by some angle about a given axis, it can be seen that:

'Ak A A
=Zj X k4 (U 5k). (A.3)
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Now we have evcrything we need for the proof. Starting with (A.2),

d a A

dt 94 =WjX Zj

k jjI

AA

i U XZJ+ A~

A i . A
=Wi X zj + E qkz x k

k=-l j

W i x Zj +4 E,, qk-f"-

k==l xq+

0iX i 4 Oqj ~t = w-X 0 .

)

7...
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